A Novel Thermal Addition of Diaryl Diselenides to Acetylenes

Akiya OGAWA,* Noriaki TAKAMI, Masahito SEKIGUCHI, Hiroshi YOKOYAMA,
Hitoshi KUNIYASU, Ilhyong RYU, and Noboru SONODA*

Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565

When diphenyl diselenide is heated at 150-180 °C in the presence of acetylenes, an acetylene insertion reaction into the Se-Se bond of the diselenide takes place to provide *vic*-bis(phenylseleno)alkenes in moderate to high yields.

The thermolysis of organic diselenides is generally discussed in terms of two competing radical type scissions, i.e., the C-Se bond fission and the Se-Se bond fission.¹⁾ The former fission to give carbon-centered radicals requires the higher activation energy, and is of importance for the carbon-carbon bond formation by radical coupling reaction.^{1d,2)} In contrast, the latter fission to give selenium-centered radicals takes place with the lower activation energy, but the synthetic application of this thermolysis *via* the Se-Se bond fission remains undeveloped, probably due to the low reactivity of seleno radicals and the recombination reaction to re-form the starting diselenides.³⁾ Herein we report that the thermolysis of diaryl diselenides in the presence of acetylenes leads to a novel thermal addition of diaryl diselenides to acetylenes.^{4,5)}

When a mixture of diphenyl diselenide 2a (0.5 mmol) and 1-octyne 1a (0.5 mmol) was heated at 150 °C for 10 h in the dark, the addition of 2a to 1a took place to give 1,2-bis(phenylseleno)-1-octene 3a in 81% yield. Similar conditions could be employed with propargyl alcohol 1b and phenylacetylene 1c, whereas the reaction of inner acetylenes required the heating at 170-180 °C. This insertion reaction was generally sluggish below 120 °C, and hardly proceeded below 100 °C (e.g., 140 °C, 5 h: 42% of 3a; 120 °C, 5 h: 11%; 100 °C, 5 h: 3%). Exceptionally, the reaction with phenylacetylene 1c occurred upon heating at 80 °C: the reaction of 1c with $(p\text{-Me-}C_6H_4Se)_2$ in the refluxing benzene for 13 h produced the corresponding adduct in 76% yield. The high

Table 1. Thermal Addition of Diphenyl Diselenide to Acetylenesa)

_		. 10%	C-C-Dh -		PhSe	ĸ.
R———R' 1: 0.5 mmol		+ PhSeSePh = 2a: 0.5 mmol			R 3 SePh	
	R	R'	Temp/°C	Time/h	Yield/% ^{b)}	E/Z
а	n-C ₆ H ₁₃	H	150	10	74 (81)	92/8
b	$HOCH_2$	H	150	10	62 (71)	80/20
c	Ph	H	150	5	74 (80)	>95/5
đ	Ph	n-C ₃ H ₇	170	20	59 (69)	>95/5
е	n-C ₃ H ₇	n-C ₃ H ₇	180	24	19 (23)	>95/5

a) Representative spectral data for some adducts are shown in Ref. 8.

b) Isolated yield (NMR yield).

reactivity of 1c is probably because vinyl radicals bearing phenyl group at the α position of the radical center, which may form π -radicals, ^{6a)} are much stable than usual vinyl radicals as σ -radicals. ^{6b,7)}

Next, the thermal reaction of 1-octyne 1a with some diaryl diselenides $((p-R-C_6H_4Se)_2, R = H, Me, CF_3)$ at 150 °C for 5 h was examined, which resulted in the formation of corresponding adducts in 57% (R = H), 48% (R = Me), and 76% $(R = CF_3)$ yields, respectively. These results indicate that electron-attracting substituents accelerate the reaction, and are consistent with the electrophilic nature of arylseleno radicals.³⁾ Finally, the radical cyclization of enyne 1f by thermolysis of diselenide 2a was demonstrated to provide the five-membered cyclic product 3f successfully.

References

- 1) a) L. Henriksen, "The Chemistry of Organic Selenium and Tellurium Compounds," ed by S. Patai, John Wiley & Sons Ltd., New York (1987), Vol. 2, Chap. 10; b) M. A. London, Ann. N. Y. Acad. Sci., 192, 132 (1972); c) T. Hirabayashi, S. Mohmand, and H. Bock, Chem. Ber., 115, 483 (1982); d) J. Y. C. Chu and J. W. Lewicki, J. Org. Chem., 42, 2491 (1977); e) L. A. Ostroukhova, N. A. Korchevin, E. N. Deryagina, and M. G. Voronkov, Zh. Obshch. Khim., 58, 2171 (1988).
- 2) H. Higuchi, T. Otsubo, F. Ogura, H. Yamaguchi, Y. Sakata, and S. Misumi, *Bull. Chem. Soc. Jpn.*, 55, 182 (1982). Cf. K. Kondo, N. Sonoda, K. Yoshida, M. Koishi, and S. Tsutsumi, *Chem. Lett.*, 1972, 401.
- 3) O. Ito, J. Am. Chem. Soc., 105, 850 (1983) and references cited therein.
- 4) The reaction of diphenyl diselenide with acetylenedicarboxylate proceeded very slowly in refluxing benzene in the dark (8% for 30 h): T. G. Back and M. V. Krishna, J. Org. Chem., 53, 2533 (1988).
- 5) The photo-initiated radical addition of diphenyl diselenide to acetylenes, see: A. Ogawa, H. Yokoyama, K. Yokoyama, T. Masawaki, N. Kambe, and N. Sonoda, J. Org. Chem., 56, 5721 (1991).
- a) L. A. Singer and J. Chen, *Tetrahedron Lett.*, 1969, 4849;
 b) R. W. Fessenden and R. H. Schuler, *J. Chem. Phys.*, 39, 2147 (1963).
- 7) The formation of vinyl radical by the attack of PhSe• to acetylene appears to be the rate-determining step. See, G. A. Russell and H. Tashtoush, J. Am. Chem. Soc., 105, 1398 (1983) and Ref. 3.
- 8) 3b: ¹H NMR (270 MHz, CDCl₃) [*E*-isomer]: δ 2.35 (t, 1H, *J* = 8.0 Hz), 4.34 (d, 2H, *J* = 8.0 Hz), 6.97 (s, 1H), 7.26-7.53 (m, 10H). [*Z*-isomer]: δ 1.82 (brs, 1H), 4.07 (s, 2H), 7.20-7.25 (m, 6H), 7.32 (s, 1H), 7.45-7.53 (m, 4H); ¹³C NMR (68 MHz, CDCl₃) [*E*-isomer]: δ 64.57, 126.83, 127.53, 127.69, 129.34, 129.42, 130.83, 131.73, 132.14, 132.32, 132.93. [*Z*-isomer]: δ 67.56, 127.54, 127.83, 128.57, 129.35, 129.41, 130.28, 132.10, 132.36, 133.18, 133.51.
 - 3d: ¹H NMR (270 MHz, CDCl₃) [*E*-isomer]: δ 0.87 (t, 3H, J = 8.0 Hz), 1.61 (m, 2H, J = 8.0 Hz), 2.63 (t, 2H, J = 8.0 Hz), 7.09-7.47 (m, 15H). [*Z*-isomer]: δ 0.55 (t, 3H), 1.31-1.47 (m, 2H), 2.11 (t, 2H), 7.09-7.47 (m, 15H); ⁷⁷Se NMR (51.5 MHz, CDCl₃, Me₂Se) [*E*-isomer]: δ 436.15 ($J_{\text{Se-Se}}$ = 19 Hz), 480.75 ($J_{\text{Se-Se}}$ = 19 Hz). [*Z*-isomer]: δ 411.50 ($J_{\text{Se-Se}}$ = 101 Hz), 508.40 ($J_{\text{Se-Se}}$ = 101 Hz).

(Received September 12, 1991)